Typesetting Math
Pos ini rusak total semenjak situs ini pindah dari Jekyll ke Hugo. Kalau ada niat dan waktu luang, mungkin saya akan perbaiki.
Untuk menulis rumus matematika, tambahkan baris berikut di awal pos (setelah front matter):
<!-- MathJax -->
<script src='https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/MathJax.js?config=TeX-MML-AM_CHTML' async></script>
Pos ini akan diterjemahkan ke dalam bahasa Indonesia suatu hari nanti. Mungkin.
Basic math
Whenever you typeset mathematical notation, it needs to have “Math” style. For example: If $a$ is an integer, then $2a+1$ is odd.
Superscripts and subscripts are created using the characters ^
and _
,
respectively: $x^2+y^2=1$ and $a_n=0$. It is fine to have both on a single
letter: $x_0^2$.
If the superscript [or subscript] is more than a single character, enclose the superscript in curly braces: $e^{-x}$.
Greek letters are typed using commands such as \gamma
($\gamma)$ and
\Gamma
($\Gamma$).
Named mathematics operators are usually typeset in roman. Most of the standards are already available. Some examples: $\det A$, $\cos\pi$, and $\log(1-x)$.
Displayed equations
When an equation becomes too large to run in-line, you display it in a “Math” paragraph by itself.
$$ f(x) = 5x^{10}-9x^9 + 77x^8 + 12x^7 + 4x^6 - 8x^5 + 7x^4 + x^3 -2x^2 + 3x + 11. $$
The \begin{aligned}...\end{aligned}
environment is superb for lining up
equations.
$$ \begin{aligned} (x-y)^2 &= (x-y)(x-y) \\\ &= x^2 -yx - xy + y^2 \\\ &= x^2 -2xy +y^2. \end{aligned} $$
$$ \begin{aligned} 3x-y&=0 & 2a+b &= 4 \\\ x+y &=1 & a-3b &=10 \end{aligned} $$
To insert ordinary text inside of mathematics mode, use \text
:
$$ f(x) = \frac{x}{x-1} \text{ for $x\not=1$}. $$
This is the $3^{\text{rd}}$ time I’ve asked for my money back.
The \begin{cases}...\end{cases}
environment is perfect for defining functions
piecewise:
$$ |x| = \begin{cases} x & \text{when $x \ge 0$ and} \\\ -x & \text{otherwise.} \end{cases} $$
Relations and operations
Equality-like: $x=2$, $x \not= 3$, $x \cong y$, $x \propto y$, $y\sim z$, $N \approx M$, $y \asymp z$, $P \equiv Q$.
Order: $x < y$, $y \le z$, $z \ge 0$, $x \preceq y$, $y\succ z$, $A \subseteq B$, $B \supset Z$.
Arrows: $x \to y$, $y\gets x$, $A \Rightarrow B$, $A \iff B$, $x \mapsto f(x)$, $A \Longleftarrow B$.
Set stuff: $x \in A$, $b \notin C$, $A \ni x$. Use
\notin
rather than\not\in
. $A \cup B$, $X \cap Y$, $A \setminus B = \emptyset$.Arithmetic: $3+4$, $5-6$, $7\cdot 8 = 7\times8$, $3\div6=\frac{1}{2}$, $f\circ g$, $A \oplus B$, $v \otimes w$.
Mod: As a binary operation, use
\bmod
: $x \bmod N$. As a relation use\mod
,\pmod
, or\pod
:$$ \begin{aligned} x &\cong y \mod 10 \\\ x &\cong y \pmod{10} \\\ x &\cong y \pod{10} \end{aligned} $$
Calculus: $\partial F/\partial x$, $\nabla g$.
Use the right dots
Do not type three periods; instead use \cdots
between operations and \ldots
in lists: $x_1 + x_2 + \cdots + x_n$ and $(x_1,x_2,\ldots,x_n)$.
Built up structures
Fractions: $\frac{1}{2}$, $\frac{x-1}{x-2}$.
Binomial coefficients: $\binom{n}{2}$.
Sums and products. Do not use
\Sigma
and\Pi
.$$ \sum_{k=0}^\infty \frac{x^k}{k!} \not= \prod_{j=1}^{10} \frac{j}{j+1}. $$
$$ \bigcup_{k=0}^\infty A_k \qquad \bigoplus_{j=1}^\infty V_j $$
Integrals:
$$ \int_0^1 x^2 \ dx $$
The extra bit of space before the $dx$ term is created with the
\
command.Limits:
$$ \lim_{h\to0} \frac{\sin(x+h) - \sin(x)}{h} = \cos x . $$
Also $\limsup_{n\to\infty} a_n$.
Radicals: $\sqrt{3}$, $\sqrt[3]{12}$, $\sqrt{1+\sqrt{2}}$.
Matrices:
$$ A = \left[\begin{matrix} 3 & 4 & 0 \\\ 2 & -1 & \pi \end{matrix}\right] . $$
A big matrix:
$$ D = \left[ \begin{matrix} \lambda_1 & 0 & 0 & \cdots & 0 \\\ 0 & \lambda_2 & 0 & \cdots & 0 \\\ 0 & 0 & \lambda_3 & \cdots & 0 \\\ \vdots & \vdots & \vdots & \ddots & \vdots \\\ 0 & 0 & 0 & \cdots & \lambda_n \end{matrix} \right]. $$
Delimiters
Parentheses and square brackets are easy: $(x-y)(x+y)$, $[3-x]$.
For curly braces use
\{
and\}
: ${x : 3x-1 \in A}$.Absolute value: $\vert x-y\vert$, $\vert\vec{x} - \vec{y}\vert$.
Floor and ceiling: $\lfloor \pi \rfloor = \lceil e \rceil$.
To make delimiters grow so they are properly sized to contain their arguments, use
\left
and\right
:$$ \left([ \sum_{n=0}^\infty a_n x^n \right)]^2 = \exp \left{ - \frac{x^2}{2} \right} $$
Occasionally, it is useful to coerce a larger sized delimiters than
\left
/\right
produce. Look at the two sides of this equation:$$ \left((x_1+1)(x_2-1)\right)
\bigl((x_1+1)(x_2-1)\bigl). $$
I think the right is better. Use
\bigl
,\Bigl
,\biggl
, and the matching\bigr
, etc.Underbraces:
$$ \underbrace{1+1+\cdots+1}_{\text{$n$ times}} = n . $$
Styled and decorated letters
Primes: $$a’$$, $$b’’$$.
Hats: $$\bar a$$, $$\hat a$$, $$\vec a$$, $$\widehat{a_j}$$.
Vectors are often set in bold: $$\mathbf{x}$$.
Calligraphic letters (for sets of sets): $$\mathcal{A}$$.
Blackboard bold for number systems: $$\mathbb{C}$$.
The text above is based on a paper by Edward R. Scheinerman1.
A few more examples from mathTeX tutorial2.
$$ e^x=\sum_{n=0}^\infty\frac{x^n}{n!} $$
$$ e^x=\lim_{n\to\infty} \left(1+\frac xn\right)^n $$
$$ \varepsilon = \sum_{i=1}^{n-1} \frac1{\Delta x} \int\limits_{x_i}^{x_{i+1}} \left{ \frac1{\Delta x}\big[ (x_{i+1}-x)y_i^\ast+(x-x_i)y_{i+1}^\ast \big]-f(x) \right}^2dx $$
Solution for quadratic:
$$ x=\frac{-b\pm\sqrt{b^2-4ac}}{2a} $$
Definition of derivative:
$$ f^\prime(x)\ = \lim_{\Delta x\to0}\frac{f(x+\Delta x)-f(x)}{\Delta x} $$
Continued fraction:
$$ f=b_o+\frac{a_1}{b_1+\frac{a_2}{b_2+\frac{a_3}{b_3+a_4}}} $$
Demonstrating \left\{…\right.
and accents.
$$ \tilde y=\left{ {\ddot x \mbox{ if $x$ odd}\atop\widehat{\bar x+1}\text{ if even}}\right. $$
Overbrace and underbrace:
$$ \overbrace{a,…,a}^{\text{k a’s}}, \underbrace{b,…,b}{\text{l b’s}}\hspace{10pt} \underbrace{\overbrace{a…a}^{\text{k a’s}}, \overbrace{b…b}^{\text{l b’s}}}{\text{k+l elements}} $$
Illustrating array:
$$ A\ =\ \left( \begin{array}{c|ccc} & 1 & 2 & 3 \ \hline 1&a_{11}&a_{12}&a_{13} \ 2&a_{21}&a_{22}&a_{23} \ 3&a_{31}&a_{32}&a_{33} \end{array} \right) $$
See Wikibook on LaTeX for more examples.